If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+12x-24=0
a = 4; b = 12; c = -24;
Δ = b2-4ac
Δ = 122-4·4·(-24)
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{33}}{2*4}=\frac{-12-4\sqrt{33}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{33}}{2*4}=\frac{-12+4\sqrt{33}}{8} $
| 6(2+k)-5K=0 | | 0.5+x=1.2;x=0.7 | | X+x3+10+x+x3+10=108 | | 8=1/2x+2 | | x+(,04x)=900 | | 24=x-11 | | 2d-15=(-3) | | (4x)^2=16 | | 17=6-(-k) | | 3(b-2)=2(b+3)÷7 | | (z-6)^2-25=0 | | (s-5)÷3=9 | | 4+2r=0 | | 22.6=y-14.4 | | 3x+5/4=x/3-x/4 | | 3(c+5)=24 | | -29-z=-16 | | -2|9-z|=-16 | | 12-4n=-9(-2+6) | | -9n+40=8(3n+5) | | 16t^2+24.5t+19.6=0 | | 19+x/12=4 | | -3-2m=-2(m+4) | | 43+x=30 | | 7(2x-3)-(8x-9)=-12 | | (5/3x)-2=x+6 | | 3(7b+1)=41+2b | | (5/3)x-2=x+6 | | 3(-8n-8)=-46-2n | | 0.11x=20 | | -4(v+2)+3v=-v-8 | | 15+(-6n)=2n-9 |